Olefin Cross-Metathesis: Studies towards the Total Synthesis of (+)-Bitungolide F

by Gandrath Dayaker* and Palakodety Radha Krishna*

D-211, Discovery Laboratory, Organic & Biomolecular Chemistry Division CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India (phone: +91-40-27193158; fax:+91-40-27160387; email: dayaker.gandrath@gmail.com)

A stereoselective synthesis of (5S,6S)-6-[(2S,5S,7R,8E,10E)-5-(benzyloxy)-7-[[(tert-butyl)dimethyl-silyl]oxy]-11-phenylundeca-8,10-dien-2-yl]-5-ethyl-5,6-dihydro-2H-pyran-2-one (=(+)-9-O-benzyl-11-O-[(tert-butyl)dimethylsilyl]bitungolide F) is reported. The strategy involves Gilman reaction, olefin cross-metathesis, and Horner–Wadsworth–Emmons olefination as key steps.

Introduction. – Bitungolides A–F are α,β -unsaturated δ -lactones, isolated from *Theonella swinhoei* by *Tanaka* and co-workers, and they show remarkable phosphatase inhibition. When bitungolides were assayed against 3Y1 rat normal fibroblast cells, a cytotoxic effect was observed at a concentration of 10 µg/ml [1a]. The structures of bitungolides were elucidated by *Tanaka* through X-ray crystallography, following the spectroscopic assignments. Structurally, all bitungolides (*Fig.*) contain one aromatic ring, two conjugated olefinic C=C bonds, 1,3-dihydroxy- and 1,3-dimethyl-substituted stereogenic centres in the side chain, and an Et-substituted stereogenic center in the lactone ring as common functionalities. Bitungolides have structures similar to those of franklinolides [1b] (*Fig.*).

Bitungolide F possesses interesting biological activities as well as a unique structural complexity; these features prompted substantial synthetic efforts towards the total synthesis of (+)-bitungolide F (1). Previously, three total syntheses of (-)-bitungolide F and one synthesis of (-)-bitungolide E have been reported [2]. Herein, we report the first synthesis of the core skeleton of 1 by a convergent strategy that features *Gilman* reaction, more importantly, an olefin cross-metathesis reaction between two diversely substituted olefins, acid-catalyzed cyclization to access an α,β -unsaturated δ -lactone, and *Horner–Wadsworth–Emmons* olefination to generate the diene functionality.

Results and Discussion. – The retrosynthetic analysis of **1** is depicted in *Scheme 1*. The target compound **1** was envisioned to be formed from aldehyde **2** and phosphonate **3** through the LiOH-mediated *Horner–Wadsworth–Emmons* olefination. The aldehyde **2**, in turn, could be synthesized from intermediate **4** by acid-catalyzed cyclization and functional-group transformations. The ester **4** could be derived from cross-metathesis product **5** on hydrogenation, silyl deprotection, oxidation, and (*Z*)-selective *Wittig* reaction. Olefin **5**, in turn, may be derived from the coupling of olefinic

© 2014 Verlag Helvetica Chimica Acta AG, Zürich

Figure. Structures of some bitungolides and franklinolides

fragments **6** and **7** by an olefin cross-metathesis protocol. One of the olefins, **7**, could be prepared from the epoxide **8** *via* epoxide ring opening under *Gilman* conditions, protection of the ensuing secondary alcohol as its 4-methoxybenzyl (PMB) ether, and C_1 -*Wittig* olefination. The epoxide **8** was prepared from known triol **9**, and the key fragment **6** was obtained from α,β -unsaturated ester **10** *via* functional-group transformations.

The synthesis of **7** (*Scheme 2*) started from the known triol **9** [3]. Oxidative cleavage of triol **9** with NaIO₄ in CH₂Cl₂ gave the corresponding aldehyde, which, on *Wittig* olefination, afforded the α,β -unsaturated ester **11** [4]. Subsequently, 'BuPh₂Si (TBDPS) protection of **11** and reduction of the α,β -unsaturated ester **12** with DIBAL-H afforded allylic alcohol **13**. *Sharpless* asymmetric epoxidation [5] of **13** gave epoxy alcohol **8**. The *Gilman* reaction unambiguously led to Me substitution [6]. Thus, the regioselective ring-opening reaction of epoxy alcohol **8** with Me₂CuLi in Et₂O, followed by the treatment of the crude product with NaIO₄ in CH₂Cl₂ to eliminate the minor 1,2-diol product, led to the required 1,3-diol **14** as a pure product. It is pertinent to mention that the Et group played a major role in defining the regioselective epoxide ring-opening. Protection of the diol **14** as its 4-methoxybenzylidene acetal and subsequent reductive opening of the acetal with DIBAL-H afforded the primary alcohol **15**. Then, oxidation of **15** under *Swern* conditions [7] gave the aldehyde, which, on *Wittig* homologation [8], furnished the fragment **7** in 80% yield.

The synthesis of olefin fragment **6** commenced from the known α,β -unsaturated ester **10** (*Scheme 3*) [9]. The ester was subjected to reduction with DIBAL-H in CH₂Cl₂ to furnish allylic alcohol **16**, which, on *Sharpless* asymmetric epoxidation [5], gave epoxy alcohol **17** (*cf.* [10]). Treatment of **17** under conventional conditions gave the epoxy chloride quantitatively, which was treated with Na in Et₂O to afford allylic

alcohol 18 [10]. Protection of the OH group as its Bn ether under conventional conditions gave olefin 6 [11].

To access the functionalized C_{10} intermediate **5**, we envisaged a cross-metathesis reaction [12] as the conjunctive protocol for the union of two equally complex moieties (*Scheme 4*). The reason for invoking this reaction is twofold: our earlier experience [12f][12g] on its use in natural-product synthesis and the challenge this reaction poses when two highly substituted complex synthons are the reactants. Accordingly, in order to optimize the cross-metathesis product **5**, various reaction conditions were evaluated. The results are compiled in the *Table*. Amongst all, *Grubbs* second-generation catalyst *Gr-II*; (10 mol-%)-mediated metathesis reaction between olefin **7** (1 equiv.) and allylic

a) 1. NaIO₄, sat. NaHCO₃, CH₂Cl₂, 0° to r.t.; 2. Ph₃P=CHCOOEt, CH₂Cl₂, 0° to r.t., 75%. b) 'BuPh₂SiCl (TBDPSCl), 1*H*-imidazole, CH₂Cl₂, r.t.; 95%. c) Diisobutylaluminium hydride (DIBAL-H), CH₂Cl₂, -78° to 0°; 98%; d) (-)-Diisopropyl D-tartrate ((-)-DIPT), Ti(O'Pr)₄, cumene hydroperoxide (CHP), CH₂Cl₂, -20° ; 90%. e) 1. Me₂CuLi, Et₂O, -20° ; 2. NaIO₄, sat. NaHCO₃, CH₂Cl₂, 0° to r.t., 85%. f) 1. Anisaldehyde dimethyl acetal, TsOH, CH₂Cl₂, 96%; 2. DIBAL-H, CH₂Cl₂, 0°, 78%. g) 1. (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78° ; 2. MePPh₃+I⁻, 'BuOK, THF, -5° to 0°; 80%.

a) DIBAL-H, CH₂Cl₂, 0°, 81%. *b*) (-)-DIPT, Ti(OⁱPr)₄, CHP, CH₂Cl₂, -20°; 90%. *c*) 1. Ph₃P, NaHCO₃, CCl₄, reflux; 2. Na/Et₂O, 0° to r.t., 82%. *d*) NaH, BnBr, THF, 0° to r.t., 85%.

alcohol **6** (1.5 equiv.) in CH₂Cl₂ (0.4M) at 45° afforded **5** (in an optimum yield of 47% (E)/(Z) 90:10; *Entry* 4). The ¹H-NMR spectrum of **5** revealed the absence terminal olefinic H-atoms in both fragments, and at the same time the appearance of two new olefinic H-atom signals at δ (H) 5.68 (*dd*, *J* = 8.2, 15.6) and 5.20 ppm (*dd*, *J* = 8.2, 15.6) indicated the formation of the cross-metathesis product.

Since the geometry of the C=C is inconsequential, reduction $(PtO_2/NaHCO_3/AcOEt)$ yielded the saturated compound **19**. Then, silyl deprotection gave the primary alcohol **20**, which, upon *Swern* oxidation, followed by (*Z*)-selective *Wittig* olefination [13] with the potassium salt of bis(2,2,2-trifluroethyl) [(methoxycarbonyl)methyl] phosponate, under phase-transfer conditions at -78 to 0° afforded (*Z*)-olefin **4** (66%) along with 8% of the (*E*)-olefin. Then, deprotection of the PMB ether gave the

a) Grubbs II, 10 mol-%, CH₂Cl₂, reflux, 47%. b) PtO₂, NaHCO₃, AcOEt, r.t., 93%. c) Bu₄NF, THF, r.t., 94%. d) 1. (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78° ; 2. (F₃CCH₂O)₂POCH₂COOMe, Potassium bis(trimethylsily)amine (KHMDS), THF, -78° to 0° ; 66%. e) 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), CH₂Cl₂/H₂O 19:1; 87%. f) TsOH, benzene, r.t., 80%. g) 1. (*tert*-Butyl)dimethylsilyl trifluoromethanesulfonate (TBDMSOTf), 2,6-lutidine, CH₂Cl₂, -10° , 82%; 2. HF · Pyridine, THF, $0^{\circ} - r.t.$, 68%. h) 1. *Dess–Martin* Periodinane (DMP), NaHCO₃, CH₂Cl₂, 0° to r.t.; 2. **3**, LiOH, THF, 44%. *i*) TiCl₄, CH₂Cl₂, 0° and -40° to 0° , or BBr₃, CH₂Cl₂, -40° to 0° , or Li naphthalenide, THF, -20° . *j*) HF/Py, THF, 0° to r.t.; 50%.

Entry	6/7 [equiv.]	Cat. (10 mol-%)	Solvent	Time [h]	Yield of 5 [%]
1	1:1	Gr-I	CH_2Cl_2	24	10
2	1:1	Gr-II	CH_2Cl_2	24	29
3	1.5:1	Gr-II	CH_2Cl_2	24	35
4	1.5:1	Gr-II	CH_2Cl_2	48	47
5	1:1.5	Gr-II	CH_2Cl_2	24	40
6	1.5:1	Gr-II	Toluene	24	32
7	1.5:1	Hoveyda Gr-I	CH_2Cl_2	24	0

Table. Cross-Metathesis Reaction between 6 and 7 Yielding 5

corresponding hydroxy ester **21**, which, on acid-catalyzed lactonisation with concomitant deprotection of the isopropylidene group, furnished the diol **22** [13b][14].

Diol 22 was silvlated (Scheme 4) as its 'BuMe₂Si (TBS) ether (TBSOTf/2.6lutidine/CH₂Cl₂/ $-10^{\circ}/20$ min), and followed by selective monodeprotection [15] of the primary silyl group in the presence of HF · pyridine in THF at 0° to room temperature affording the primary alcohol 23. The primary OH group of 23 was oxidized with Dess-Martin periodinane [16] to give aldehyde 2, which, after passing through a short pad of silica gel and without any further characterization, was used for the next reaction. Thus, 2, on LiOH-mediated Horner-Wadsworth-Emmons olefination [17][2a] with diethyl cinnamylphosphonate (3, prepared by refluxing (EtO)₃P and cinnamyl bromide) in THF at reflux temperature for 12 h, furnished the (E)-olefin 24 (44%) along with traces of the (Z)-isomer. Next task was the removal of both silvl and Bn protecting groups in 24. Initially, a one-pot deprotection of both groups was attempted, *i.e.*, the acid-catalyzed deprotection using TiCl₄ (Scheme 4). During this reaction, a total consumption of starting material was observed. The EI-MS of the crude product displayed the mass peaks at m/z 383 ($[M-H]^+$) and 384 (M^+), supporting the expected product formation. However, ¹H-NMR was not clean after purification. Hence, we decided to use alternate reaction conditions and attempted BBr₃-mediated one-pot deblocking strategy [18] (Scheme 4). Unfortunately, these reaction conditions proved too drastic and resulted in total decomposition of the starting material. Later, a stepwise deprotection was planned; first, the removal of the Bn group, followed by that of the silyl group. Accordingly, when Li napthalenide [19] in THF was used, no expected product was formed, although total consumption of starting material was observed. Alternatively, when the silyl group was removed first under conventional conditions, the expected product 25 was formed albeit in moderate yield (50%), but the removal of the 9-O-Bn group remained elusive as ever even under different Lewis acid conditions (like TiCl₄ or BCl₃) or under reductive conditions. Though Bn removal was reported under certain conditions such as CrCl₂/LiI [20a] in aqueous AcOEt or according to some other protocols [20b], herein the removal of 9-O-Bn proved difficult due to the sensitivity of the skeleton. Since all the above conditions proved futile, the synthetic route was abandoned.

Conclusions. – The synthesis of (5*S*,6*S*)-6-[(2*S*,5*S*,7*R*,8*E*,10*E*)-5-(benzyloxy)-7-{[(*tert*-butyl)dimethylsilyl]oxy}-11-phenylundeca-8,10-dien-2-yl]-5-ethyl-5,6-dihydro-2*H*-pyran-2-one (9-*O*-benzyl-11-*O*-[(*tert*-butyl)dimethylsilyl]bitungolide F) containing five stereogenic centers and two conjugated (E)-C=C was achieved involving crossmetathesis reaction as the key step.

One of the authors (G. D.) thanks the UGC, New Delhi, for the research fellowship.

Experimental Part

General. Solvents were dried over standard drying agents and freshly distilled prior to use. Chemicals were purchased and used without further purification. Org. solns. were dried (anh. Na₂SO₄) and concentrated below 40° *in vacuo*. Column chromatography (CC): silica gel (SiO₂; 60–120 mesh). Optical rotations: *JASCO DIP 300* digital polarimeter at 25°. IR Spectra: *Perkin-Elmer IR-683* spectrophotometer with NaCl optics. ¹H- (200, 300, and 500 MHz) and ¹³C-NMR (50, 75, and 100 MHz) spectra: *Varian Gemini FT-200* MHz, *Bruker Avance* 300 MHz, and *Bruker Avance* 500 MHz spectrometers with TMS as internal standard for solns. in CDCl₃; *J* values in Hz. MS: *CEC-21-11013* or *Finnigan Mat 1210* double-focusing mass spectrometers operating at a direct inlet system or *LC/MSD Trap SL* (*Agilent Technologies*). The software ACD/Name Version 1.0, developed by M/s Advanced Chemistry Development Inc., Toronto, Canada, assisted nomenclature used in the *Exper. Part.*

Ethyl (2E,4R)-4-(*Hydroxymethyl*)*hex-2-enoate* (**11**). To a stirred soln. of **9** [3] (3.70 g, 27.61 mmol) in CH₂Cl₂ (40 ml) were added NaIO₄ (9.2 g, 43.0 mmol) and sat. aq. NaHCO₃ (1.5 ml) at 0° , the mixture was stirred at r.t. for 10 h, then filtered through a Na₂SO₄ pad, washed with CH₂Cl₂ (30 ml), CH₂Cl₂ was evaporated, and the crude aldehyde was used as such for the next step.

To a soln. of the aldehyde (2.70 g, 26.47 mmol) in CH₂Cl₂ (30 ml) was added ethyl (triphenyl- λ^{5} -phosphanylidene)acetate (13.91 g, 31.76 mmol) at 0°. The mixture was stirred at r.t. for 3 h, then CH₂Cl₂ was evaporated, and the residue was purified by CC (SiO₂; AcOEt/hexane 1:4) to furnish **11** (3.55 g, 75% yield for two steps). Colorless liquid. [α]_D²⁵ = -35.1 (c = 2.5, CHCl₃). IR (neat): 3400, 1700, 1610, 1290. ¹H-NMR (200 MHz): 6.74 (dd, J = 8.8, 15.4, 1 H); 5.87 (d, J = 16.6, 1 H); 4.19 (q, J = 7.3, 2 H); 3.68 – 3.54 (m, 2 H); 2.39 – 2.18 (m, 1 H); 1.68 – 1.38 (m, 2 H); 1.30 (t, J = 7.3, 3 H); 0.92 (t, J = 7.3, 3 H). ¹³C-NMR (75 MHz): 166.7; 150.3; 123.0; 64.7; 60.4; 46.8; 23.0; 14.0; 11.4. EI-MS: 172 (M^+). Anal. calc. for C₉H₁₆O₃ (172.22): C 62.77, H 9.36; found: C 62.75, H 9.35. These data are consistent with those reported in [4].

Ethyl (2E,4R)-4-([[(tert-*Butyl*)*diphenylsily*]*joxy*]*methyl*)*hex-2-enoate* (**12**). To a cooled soln. of **11** (3.2 g, 18.60 mmol) and 1*H*-imidazole (3.79 g, 55.80 mmol) in CH₂Cl₂ (30 ml) was slowly added TBDPSCI (5.35 ml, 20.46 mmol) at 0°. The mixture was warmed to r.t. and stirred for 3 h, the reaction was quenched with aq. HCl (1N, 30 ml), and the layers separated. The org. phase was washed with brine (100 ml), dried (Na₂SO₄), filtered, and concentrated to afford **12** (7.20 g, 95%) after CC (SiO₂; AcOEt/ hexane 4:96). White syrupy liquid. [a]₂₅²⁵ = +0.32 (c = 1.3, CHCl₃). IR (neat): 1750, 1610, 1210. ¹H-NMR (300 MHz): 7.63 – 7.57 (m, 4 H); 7.41 – 7.29 (m, 6 H); 6.78 (dd, J = 8.3, 15.8, 1 H); 5.79 (d, J = 14.3, 1 H); 4.18 (q, J = 6.7, 2 H); 3.59 (dd, J = 2.2, 6.0, 2 H); 2.33 – 2.21 (m, 1 H); 1.67 – 1.55 (m, 1 H); 1.45 – 1.31 (m, 1 H); 1.11 (t, J = 6.7, 3 H); 1.03 (s, 9 H); 0.86 (t, J = 6.7, 3 H). ¹³C-NMR (100 MHz): 166.4; 150.3; 135.4; 133.4; 129.5; 127.5; 122.2; 66.0; 60.1; 46.8; 26.8; 23.2; 19.4; 14.3; 11.5. HR-ESI-MS: 433.2190 ([M + Na]⁺, C₂; H₃₄NaO₃Si⁺; calc. 433.2175).

(2E,4R)-4-([[(tert-*Butyl*)*diphenylsily*]*joxy]methyl*)*hex-2-en-1-ol* (**13**). To a stirred soln. of **12** (7.00 g, 17.07 mmol) in anh. CH₂Cl₂ (70 ml), DIBAL-H (34.14 ml, 34.14 mmol, 1M soln. in hexane) was added at -10° , and the mixture was stirred at 0° for 2 h. Then, MeOH (3 ml) was added, to the mixture at 0° and stirred for 10 min. Next, sat. aq. soln. of sodium potassium tartarate (10 ml) was added, and after 10 min MeOH was evaporated. The residue was diluted with H₂O (40 ml) and extracted with CH₂Cl₂ (2 × 100 ml). The combined org. layers were washed with brine (100 ml), dried (Na₂SO₄), concentrated, and the residue was purified by CC (SiO₂; AcOEt/hexane 10:90) to afford **13** (6.15 g, 98%). Colorless syrup. $[a]_{25}^{25} = -24.7$ (c = 1.2, CHCl₃). IR (neat): 3420, 3110, 1590, 1200. ¹H-NMR (200 MHz): 7.66-7.56 (m, 4 H); 7.41-7.28 (m, 6 H); 5.71-5.35 (m, 2 H); 4.04 (d, J = 5.4, 2 H); 3.57 (d, J = 6.3, 2 H); 2.20-2.00 (m, 1 H); 1.67-1.50 (m, 3 H); 1.03 (s, 9 H); 0.84 (t, J = 7.8, 3 H). ¹³C-NMR (100 MHz): 135.5; 134.2;

133.8; 130.2; 129.5; 127.5; 66.9; 63.8; 46.6; 26.8; 23.6; 19.2; 11.5. HR-ESI-MS: 391.2062 ($[M + Na]^+$, $C_{23}H_{32}NaO_2Si^+$; calc. 391.2069).

3,4-Anhydro-1-O-[(tert-butyl)diphenylsilyl]-2-deoxy-2-ethyl-L-arabinitol (8). To a suspension of thoroughly dried molecular sieves (MS) (4 Å, 5 g) in anh. CH₂Cl₂ (60 ml) was added (–)-DIPT (2.30 g in 10 ml CH₂Cl₂, 9.82 mmol), followed by slow addition of Ti(OⁱPr)₄ (2.40 ml, 8.45 mmol) at -20° . After stirring for 30 min, cumene hydroperoxide (CHP; 2.94 ml, 19.68 mmol) was slowly added, and the resulting soln. was stirred at -20° for a further 30 min. Allylic alcohol **13** (6.1 g, 16.50 mmol) in CH₂Cl₂ (20 ml) was then added, and the mixture was stirred at -20° for 3 h, then warmed up to 0°, and an aq. basic soln. (3M NaOH/brine 3 :7, 30 ml) was added. After stirring for 1 h, the mixture was filtered through a pad of *Celite*, and the pad was further washed with CH₂Cl₂. The filtrate was concentrated and purified by flash CC (SiO₂; AcOEt/hexane 20:80) to afford **8** (5.7 g, 90%) Colorless oil. [α]⁵⁵₂ = +37.14 (c = 3.7, CHCl₃). IR (neat): 3415, 3010, 1240, 1140. ¹H-NMR (200 MHz): 7.70–7.53 (m, 4 H); 7.43–7.30 (m, 6 H); 3.83 (d, J = 1.7, 1 H); 3.72–3.49 (m, 3 H); 2.98–2.85 (m, 2 H); 1.63–1.14 (m, 3 H); 1.04 (s, 9 H); 0.91 (t, J = 7.3, 3 H). ¹³C-NMR (100 MHz): 135.4; 133.5; 129.6; 127.6; 64.1; 61.7; 58.3; 58.0; 45.3; 26.7; 22.1; 19.0; 11.4. HR-ESI-MS: 407.2010 ([M + Na]⁺, C₂₃H₃₂NaO₃Si⁺; calc. 407.2018).

1-O-[(tert-*Butyl*)*diphenylsily*]-2,4-*dideoxy*-2-*ethy*]-4-*methy*]-L-*arabinitol* (14). To a stirred mixture of CuI (11.88 g, 62.40 mmol) in anh. Et₂O (100 ml), MeLi (78 ml, 124.80 mmol, 1.6M soln. in hexane) was added within 30 min at 0°. The yellow color of the mixture turned to colorless, and stirring was continued for 0.5 h. A soln. of **8** (4.80 g, 12.48 mmol) in anh. Et₂O (20 ml) was added at -20° , and the mixture was stirred for 20 h at the same temp. The reaction was quenched with aq. NH₄Cl (60 ml) and NH₃ solns. (60 ml) at 0°, and the mixture was allowed to be stirred for 15 min. Org. layer was separated, and the aq. layer was extracted with AcOEt (2 × 100 ml). The combined org. layers were washed with H₂O (2 × 100 ml) and brine (100 ml), dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was treated with NaIO₄ in CH₂Cl₂ for 10 h at r.t., then purified by CC (SiO₂; AcOEt/hexane, 23:77) to afford **14** (4.25 g, 85%). Colorless liquid. $[a]_{25}^{25} = +30.62$ (c = 2.65, CHCl₃). IR (neat): 3450, 3090, 1240, 1140. ¹H-NMR (300 MHz): 7.67-7.61 (m, 4 H); 7.45-7.34 (m, 6 H); 3.84-3.76 (m, 3 H); 3.72-3.55 (m, 2 H); 1.98-1.84 (m, 1 H); 1.65-1.42 (m, 2 H); 1.37-1.31 (m, 1 H); 1.06 (s, 9 H); 0.78 (t, J = 7.5, 3 H); 0.72 (d, J = 7.5, 3 H). ¹³C-NMR (75 MHz): 135.6; 132.6; 129.9; 127.7; 81.7; 68.8; 66.3; 43.5; 37.2; 26.8; 19.1; 15.9; 13.7; 12.1. HR-ESI-MS: 423.2315 ($[M + Na]^+$, C₂₄H₃₆NaO₃Si⁺; calc. 423.2311).

1-O-[(tert-*Butyl*)*diphenylsilyl*]-2,4-*dideoxy*-2-*ethyl*-3,5-O-(4-*methoxybenzylidene*)-4-*methyl*-L-*arabinitol*. To a soln. of **14** (3.80 g, 9.50 mmol) in anh. CH₂Cl₂ (30 ml) were added *p*-anisaldehyde dimethyl acetal (1.79 ml, 10.45 mmol) and cat. TsOH at r.t. After 2 h at r.t., anh. MeOH (1 ml) was added, and the soln. was stirred for 5 min, and then cooled to 0°. A sat. aq. soln. of NaHCO₃ (10 ml) and H₂O (30 ml) were added. The mixture was extracted with CH₂Cl₂ (2 × 60 ml), the extracts were washed with brine (70 ml), dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by CC (SiO₂; AcOEt/hexane 3 :97) to afford the cyclic acetal (4.7 g, 96%). Colorless oil. [*a*]₂₅²⁵ = +59.0 (*c* = 1.0, CHCl₃). IR (neat): 3070, 2900, 1260, 1140. ¹H-NMR (300 MHz): 7.66 - 7.55 (*m*, 4 H); 7.39 - 7.16 (*m*, 8 H); 6.79 (*d*, *J* = 8.3, 2 H); 5.32 (*s*, 1 H); 4.07 (*dd*, *J* = 4.5, 10.5, 1 H); 3.86 - 3.60 (*m*, 7 H); 2.11 - 2.00 (*m*, 1 H); 1.81 - 1.70 (*m*, 1 H); 1.66 - 1.49 (*m*, 1 H); 1.28 - 1.10 (*m*, 1 H); 1.04 (*s*, 9 H); 0.75 (*t*, *J* = 6.7, 3 H); 0.72 (*d*, *J* = 6.7, 3 H). ¹³C-NMR (75 MHz): 135.5; 133.0; 129.5; 129.4; 127.5; 127.3; 113.3; 100.9; 81.5; 73.3; 62.8; 55.2; 43.3; 30.1; 29.6; 26.8; 18.0; 12.9; 12.3. HR-ESI-MS: 541.2758 ([*M* + Na]⁺, C₃₂H₄₂NaO₄Si⁺; calc. 541.2750).

1-O-[(tert-*Butyl*)*diphenylsily*]-2,4-*dideoxy*-2-*ethyl*-3-O-(4-*methoxybenzyl*)-4-*methyl*-L-*arabinitol* (15). DIBAL-H (9.55 ml, 1M soln. in hexane, 9.55 mmol) was added to a soln. of the cyclic acetal (4.50 g, 8.68 mmol) in CH₂Cl₂ (40 ml) at -20° , and the temp. was raised to 0° . After 3 h, MeOH (3 ml) was added to the mixture at 0° , and the mixture was stirred for 10 min. Sat. aq. soln. of sodium potassium tartrate (10 ml) was added, and after 10 min MeOH was evaporated. The mixture was diluted with H₂O (30 ml) and extracted with CH₂Cl₂ (2 × 60 ml). The org. layer was washed with brine (60 ml), dried (Na₂SO₄), and concentrated *in vacuo*. The crude product was purified by CC (SiO₂; AcOEt/hexane 10:90) to afford **15** (3.50 g, 78%). Colorless liquid. $[\alpha]_{D}^{25} = +7.70$ (*c* = 1.5, CHCl₃). IR (neat): 3400, 3100, 1200, 1140. ¹H-NMR (200 MHz): 7.64–7.60 (*m*, 4 H); 7.42–7.60 (*m*, 6 H); 7.11 (*d*, *J* = 8.0, 2 H); 6.76 (*d*, *J* = 8.8, 2 H); 4.50–4.40 (*m*, 2 H); 3.77 (*s*, 3 H); 3.72–3.54 (*m*, 5 H); 1.96–1.77 (*m*, 1 H); 1.60–1.40 (*m*, 2 H); 1.32–1.13 (*m*, 1 H); 1.07 (*s*, 9 H); 0.88 (*t*, *J* = 7.3, 3 H); 0.77 (*d*, *J* = 6.7, 3 H). ¹³C-NMR (75 MHz):

135.5; 133.1; 131.2; 129.6; 129.3; 127.6; 113.8; 84.2; 74.8; 66.8; 63.7; 55.2; 45.7; 37.8; 26.9; 18.7; 15.2; 12.6. HR-ESI-MS: 543.2899 ($[M + Na]^+$, $C_{32}H_{44}NaO_4Si^+$; calc. 543.2907).

 $(tert-Butyl)(\{(2S,3S,4S)-2-ethyl-3-[(4-methoxybenzyl)oxy]-4-methylhex-5-en-1-yl/oxy)diphenylsi$ $lane (7). A soln. of oxalyl chloride (0.57 ml, 6.63 mmol) and CH₂Cl₂ (15 ml) at <math>-78^{\circ}$ was treated with DMSO (1.03 ml, 13.26 mmol). After 15 min, a soln. of **15** (2.30 g, 4.42 mmol) in CH₂Cl₂ (10 ml) was added dropwise. After 1 h, Et₃N (3.69 ml, 26.52 mmol) was added dropwise, and the mixture was warmed to -30° . Then, it was diluted with CH₂Cl₂ (20 ml), warmed to r.t., and washed sequentially with H₂O (25 ml), sat. aq. NH₄Cl (20 ml), H₂O (25 ml), and brine (25 ml). The org. layer was dried (Na₂SO₄), filtered, and concentrated *in vacuo* to afford aldehyde (2.30 g, 99% crude) as a clear, colorless oil. This was used without further purification.

To a soln. of (methylidene)triphenylphosphonium iodide (4.72 g, 13.32 mmol) in anh. THF (25 ml), 'BuOK (1.24 g, 11.10 mmol) was added at -5° , and the mixture was stirred for 3 h at 0°. The aldehyde (2.30 g, 4.40 mmol) in anh. THF (10 ml) was added at 0°, and the mixture was stirred for 3 h. The reaction was quenched with sat. NH₄Cl (20 ml) soln., org. layer was separated, and the aq. layer was extracted with Et₂O (2 × 60 ml). The combined org. layers were washed with brine (20 ml), dried (Na₂SO₄), and concentrated to give a crude residue, which was purified by CC (SiO₂; AcOEt/hexane 2:98) to afford **7** (1.82 g, 80% over two steps). Colorless syrup. $[\alpha]_{15}^{25} = +40.97$ (c = 2.2, CHCl₃). IR (neat): 3100, 1610, 1190, 1140. ¹H-NMR (200 MHz): 7.69–7.55 (m, 4 H); 7.42–7.26 (m, 6 H); 7.17 (d, J = 8.8, 2 H); 6.79 (d, J = 8.8, 2 H); 5.98 (m, 1 H); 5.00–4.51 (m, 2 H); 4.45–4.30 (m, 2 H); 3.77 (s, 3 H); 3.61 (d, J = 5.1, 2 H); 3.50 (t, J = 5.1, 1 H); 2.48–2.27 (m, 1 H); 1.69–1.43 (m, 2 H); 1.33–1.24 (m, 1 H); 1.06 (s, 9 H); 0.98 (t, J = 6.6, 3 H); 0.76 (d, J = 6.6, 3 H). ¹³C-NMR (75 MHz): 158.9; 141.7; 135.6; 133.8; 131.4; 129.6; 129.1; 127.5; 114.1; 113.5; 82.7; 74.4; 62.9; 55.2; 45.2; 40.9; 26.9; 19.2; 18.7; 17.6; 12.2. HR-ESI-MS: 539.2947 ([M +Na]⁺, C₃₃H₄₄NaO₃Si⁺; calc. 539.2957).

(2E)-4-[(4R)-2,2-Dimethyl-1,3-dioxolan-4-yl]but-2-en-1-ol (16). To a stirred soln. of 10 (6.82 g, 34.1 mmol) in anh. CH₂Cl₂ (20 ml), DIBAL-H (68.2 ml, 68.2 mmol, 1M soln. in hexane) was added at 0°, and the mixture was stirred at the same temp. for 2 h. MeOH (2 ml) was added to the mixture at 0° and stirred for 10 min., sat. aq. soln. of sodium potassium tartrate (5 ml) was added, and, after 10 min, MeOH was evaporated. The residue was diluted with H₂O (20 ml) and extracted with CH₂Cl₂ (2 × 25 ml). The combined org. layers were washed with brine (10 ml), dried (Na₂SO₄), concentrated, and the residue was purified by CC (SiO₂; AcOEt/hexane 2 :8) to afford 16 (4.75 g, 81%). Colorless syrup. [a]₂₅²⁵ = +42.0 (c = 0.50). IR (neat): 3400, 1610, 1220, 1160. ¹H-NMR (300 MHz): 5.79 – 5.58 (m, 2 H); 4.18 – 4.06 (m, 3 H); 3.98 (dd, J = 6.0, 8.3, 1 H), 3.80 (dd, J = 6.0, 8.3, 1 H), 2.41 – 2.21 (m, 2 H); 1.73 – 1.51 (br. *s*, 1 H); 1.38 (s, 3 H); 1.31 (s, 3 H). ¹³C-NMR (75 MHz): 132.1; 127.1; 108.9; 75.1; 68.7; 63.1; 36.4; 26.7; 25.4. EI-MS: 172 (M⁺). Anal. calc. for C₉H₁₆O₃ (172.22): C 62.77, H 9.36; found: C 62.79, H 9.34. Spectroscopic data are consistent with those reported in [10].

4,5-Anhydro-3-deoxy-1,2-O-(1-methylethylidene)-D-xylo-hexitol (**17**). To a suspension of thoroughly dried MS (4 Å, 3.0 g) in anh. CH₂Cl₂ (60 ml) was added (–)-DIPT (0.59 ml, 2.52 mmol), followed by slow addition of Ti(OⁱPr)₄ (0.37 ml, 1.26 mmol) at -20° . After stirring for 30 min, CHP (1.94 ml, 12.60 mmol) was slowly added, and the mixture was stirred at -20° for a further 30 min. Allylic alcohol **16** (4.3 g, 25.00 mmol) in CH₂Cl₂ (20 ml) was then added, and the mixture was stirred at -20° for a further 30 min. Allylic alcohol **16** (4.3 g, 25.00 mmol) in CH₂Cl₂ (20 ml) was then added, and the mixture was stirred at -20° for 12 h, then warmed up to 0°, and an aq. basic soln. (3M NaOH/brine 3 :7, 100 ml) was added. After stirring for 1 h, the mixture was filtered through a pad of *Celite*, and the pad was further washed with CH₂Cl₂. The filtrate was concentrated and purified by flash CC (SiO₂; AcOEt/hexane 25 :75) to afford **17** (4.23 g, 90%). Colorless oil. [a]_D²⁵ = +79.92 (c=0.85, CHCl₃). IR (neat): 3410, 1200, 1110. ¹H-NMR (200 MHz): 4.31 – 4.14 (m, 1 H); 4.05 (dd, J = 5.4, 7.8, 1 H); 3.83 (dd, J = 2.3, 12.5, 1 H); 3.66 – 3.48 (m, 2 H); 3.09 – 2.99 (m, 1 H); 2.91 – 2.87 (m, 1 H); 2.03 – 1.83 (m, 1 H); 1.69 – 1.50 (m, 1 H); 1.38 (s, 3 H); 1.34 (s, 3 H). ¹³C-NMR (75 MHz): 108.9; 73.3; 69.1; 61.4; 58.6; 52.9; 36.3; 26.7; 25.4. EI-MS: 188 (M^+). Anal. calc. for C₉H₁₆O₄ (188.22): C 57.43, H 8.57; found: C 57.45, H 8.59. Spectroscopic data are consistent with those reported in [10].

(2R)-1-[(4R)-2,2-Dimethyl-1,3-dioxolan-4-yl]but-3-en-2-ol (18). To a stirred soln. of 17 (4.0 g, 21.27 mmol) in anh. CCl₄ (25 ml), Ph₃P (11.1 g, 42.55 mmol) and NaHCO₃ (0.178 g, 2.17 mmol) were added, and the mixture was heated reflux for 4 h. CCl₄ was evaporated under reduced pressure, and the

residue was purified by CC (SiO₂; AcOEt/hexane, 0.5:9.5) to afford epoxy chloride quantitatively as a colorless syrup.

A soln. of epoxy chloride (4.30 g, 20.87 mmol) in anh. Et₂O (15 ml) was added dropwise to a stirred suspension of freshly prepared Na sand (0.96 g, 41.7 mmol) in anh. Et₂O (20 ml) under N₂ at r.t. during 20 min. After complete addition, the mixture was stirred for further 8 h. Then, the reaction was carefully quenched with MeOH (10 ml) at 0°, and the mixture was diluted with brine (5 ml), dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by CC (SiO₂; AcOEt/hexane 2 :8) to give **18** (3.0 g, 82% over two steps). Colorless syrup. $[a]_{25}^{25} = -25.84$ (c = 1.1, CHCl₃). IR (neat): 3420, 3010, 1610, 1220, 1110. ¹H-NMR (300 MHz): 5.92–5.80 (m, 1 H); 5.33–5.06 (m, 2 H); 4.37–4.20 (m, 2 H); 4.03 (dd, J = 6.0, 8.3, 1 H); 3.53 (t, J = 7.5, 1 H); 2.36–2.10 (br. s, 1 H); 1.85–1.62 (m, 2 H); 1.39 (s, 3 H); 1.33 (s, 3 H). ¹³C-NMR (75 MHz): 140.5; 114.3; 108.8; 73.2; 69.8; 69.4; 39.8; 26.8; 25.6. EI-MS: 172 (M^+). Anal. calc. for C₉H₁₆O₃ (172.22): C 62.77, H 9.36; found: C 62.76, H 9.33. Spectroscopic data are consistent with reported ones [12].

(4R)-4-[(2R)-2-(Benzyloxy)but-3-en-1-yl]-2,2-dimethyl-1,3-dioxolane (6). To a cooled (0°) suspension of NaH (0.837 g, 34.8 mmol, 60% (*w*/*w*) dispersion in paraffin oil) in THF (15 ml), a soln. of **18** (3.0 g, 17.4 mmol) in THF (10 ml) was added dropwise. After 15 min, BnBr (3.28 g, 17.4 mmol) was added dropwise at 0° and stirred for 6 h at r.t. The reaction was quenched with sat. aq. NH₄Cl soln. (30 ml), and the mixture was extracted with AcOEt (2 × 100 ml). The combined org. layers were washed with H₂O (100 ml) and brine (50 ml), dried (Na₂SO₄), and evaporated. The crude product was purified by CC (SiO₂; AcOEt/hexane, 1:9) to afford **6** (3.87 g, 85%). Light-yellow syrup. $[\alpha]_{15}^{25} = +59.81 (c = 0.9, CHCl_3)$. IR (neat): 2990, 1610, 1190, 1100. ¹H-NMR (300 MHz): 7.37 – 7.17 (*m*, 5 H); 5.85 – 5.65 (*m*, 1 H); 5.28 – 5.15 (*m*, 2 H); 4.60 – 4.10 (*m*, 3 H); 4.05 – 3.80 (*m*, 2 H); 3.47 (*t*, *J* = 7.8, 1 H); 1.75 (*t*, *J* = 6.2, 2 H); 1.35 (*s*, 3 H); 1.31 (*s*, 3 H). ¹³C-NMR (75 MHz): 138.5; 138.0; 128.3; 127.7; 127.4; 117.4; 108.3; 77.7; 73.3; 70.4; 69.9; 40.0; 26.9; 25.8. HR-ESI-MS: 285.1458 ([*M*+Na]⁺, C₁₆H₂₂NaO₃⁺; calc. 285.1467). Spectroscopic data are consistent with those reported in [11].

((2S,3S,4S,5E,7R)-7-(Benzyloxy)-8-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-2-ethyl-3-[(4-methoxy-benzyl)oxy]-4-methyloct-5-en-1-yl]oxy)(tert-butyl)diphenylsilane (**5**). To a soln. of**7**(0.882 g, 1.71 mmol) in anh. CH₂Cl₂ (0.4M) were added**6**(0.673 g, 2.57 mmol) and*Grubbs II*catalyst (10 mol-%) under N₂ at r.t., then temp. was raised to reflux, and the mixture was stirred for 48 h. The mixture was directly adsorbed on SiO₂ to perform the CC (SiO₂; AcOEt/hexane 4:96) to afford**5** $(0.60 g, 47%). Colorless syrup. <math>[a]_{D}^{25} = +32.99$ (c = 2.0, CHCl₃). IR (neat): 3010, 2940, 1610, 1190, 1100. ¹H-NMR (200 MHz): 7.73 - 7.54 (m, 4 H); 7.49 - 7.08 (m, 13 H); 6.78 (d, J = 8.5, 2 H); 5.68 (dd, J = 8.2, 15.6, 1 H); 5.20 (dd, J = 8.2, 15.6, 1 H); 4.57 - 4.37 (m, 4 H); 2.50 - 2.29 (m, 1 H); 3.94 (dd, J = 5.8, 7.8, 1 H); 3.76 (s, 3 H); 3.61 - 3.45 (m, 2 H); 3.39 (t, J = 7.8, 1 H); 2.50 - 2.29 (m, 1 H); 1.67 - 1.24 (m, 14 H); 1.07 (s, 9 H); 0.78 (t, J = 7.0, 3 H). ¹³C-NMR (75 MHz): 158.5; 139.0; 136.8; 135.3; 133.5; 131.1; 129.6; 129.3; 128.6; 127.9; 127.4; 127.3; 127.1; 113.3; 108.5; 82.5; 76.3; 74.3; 73.1; 69.7; 69.6; 62.5; 54.9; 45.3; 39.9; 39.6; 29.2; 26.6; 25.5; 19.0; 18.6; 18.3; 12.0. HR-ESI-MS: 773.4215 ($[M + Na]^+$, $C_{47}H_{62}NaO_6Si^+$; calc. 773.4213).

 $((2S,3S,4S,7S)^{-7-}(Benzyloxy)^{-8-}[(4S)^{-2,2-}dimethyl^{-1,3-}dioxolan^{-4}-yl]^{-2-}ethyl^{-3-}[(4-methoxybenzyl)^{-0}oxy]^{-4-methyloctyl]oxy}(tert-butyl)diphenylsilane (19). To a stirred soln. of$ **5**(1.4 g, 1.86 mmol) in AcOEt (6 ml), a cat. amount of PtO₂ was added, and the mixture was stirred for 8 h at r.t. under H₂. The mixture was filtered through a pad of*Celite*; and the filtrate was concentrated under reduced pressure and adsorbed on SiO₂ for the CC (SiO₂; AcOEt/hexane 4:96) to furnish**19** $(1.30 g, 93%). Colorless syrup. <math>[\alpha]_{25}^{25} = +23.95$ (c = 0.35, CHCl₃). IR (neat): 3020, 2990, 1290, 1120. ¹H-NMR (200 MHz): 7.62 – 7.59 (m, 4 H); 7.36 – 7.23 (m, 11 H); 7.13 (d, J = 8.2, 2 H); 6.75 (d, J = 8.2, 2 H); 4.57 – 4.32 (m, 4 H); 4.29 – 4.07 (m, 1 H); 4.03 – 3.89 (m, 1 H); 3.75 (s, 3 H); 3.62 – 3.38 (m, 5 H); 1.17 – 1.08 (m, 16 H); 1.07 (s, 9 H); 0.85 (d, J = 6.6, 3 H); 0.74 (t, J = 7.4, 3 H). ¹³C-NMR (75 MHz): 135.6; 133.2; 130.9; 129.6; 129.0; 128.3; 127.8; 127.6; 127.5; 113.6; 108.3; 83.2; 76.9; 74.7; 73.7; 71.5; 70.1; 63.6; 55.2; 44.9; 39.5; 39.0; 36.1; 32.0; 27.0; 25.9; 19.3; 19.0; 18.4; 16.7; 12.6. HR-ESI-MS: 775.4386 ($[M + Na]^+$, C₄₇H₆₄NaO₆Si⁺; calc. 775.4370).

(2S,3S,4S,7S)-7-(Benzyloxy)-8-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-2-ethyl-3-[(4-methoxybenzyl)oxy]-4-methyloctan-1-ol (20). To a soln. of 19 (1.25 g, 1.66 mmol) in anh. THF (10 ml), Bu₄NF (2 ml, 1.99 mmol, 1M soln. in THF) was added at 0° under N₂ atmosphere, and the mixture was stirred for 12 h at r.t. THF was evaporated to furnish a crude residue, which was purified by CC (SiO₂; AcOEt/hexane 16 :84) to afford **20** (0.80 g, 94%). Colorless syrup. $[\alpha]_{D}^{25} = +27.9$ (c = 0.4, CHCl₃). IR (neat): 3400, 3010, 2920, 1190, 1100. ¹H-NMR (200 MHz): 7.32 – 7.23 (m, 5 H); 7.18 (d, J = 8.3, 2 H); 6.75 (d, J = 8.3, 2 H); 4.58 – 4.41 (m, 4 H); 4.22 – 4.00 (m, 1 H); 3.98 (dd, J = 6.0, 7.9, 1 H); 3.75 (s, 3 H); 3.67 – 3.56 (m, 3 H); 3.44 (t, J = 7.9, 1 H); 3.34 (dd, J = 2.6, 6.7, 1 H); 1.78 – 1.62 (m, 8 H); 1.53 – 1.43 (m, 2 H); 1.36 (s, 3 H); 1.30 (s, 3 H); 0.88 (m, 6 H). ¹³C-NMR (75 MHz): 130.7; 129.2; 128.2; 127.7; 127.4; 113.7; 108.3; 84.3; 76.7; 73.8; 73.5; 71.4; 69.9; 63.4; 55.1; 44.0; 38.9; 35.6; 32.0; 27.6; 26.9; 25.7; 18.7; 16.7; 12.5. HR-ESI-MS: 537.3184 ($[M + Na]^+$, $C_{31}H_{40}NaO_{6}^+$; calc. 537.3192).

Methyl (2Z,4S,5S,6S,9S)-9-(Benzyloxy)-10-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-4-ethyl-5-[(4-methoxybenzyl)oxy]-6-methyldec-2-enoate (4). To a stirred soln. of oxalyl chloride (0.20 ml, 2.33 mmol) in CH₂Cl₂ (7 ml) at -78° , DMSO (0.36 ml, 4.66 mmol) was added. After 15 min, a soln. of **20** (0.80 g, 1.55 mmol) in CH₂Cl₂ (5 ml) was added dropwise. After 1 h, Et₃N (1.30 ml, 9.32 mmol) was added dropwise, and the mixture was warmed to -30° . It was diluted with CH₂Cl₂ (15 ml), warmed to r.t., and washed sequentially with H₂O (20 ml) and brine (20 ml). The org. layer was dried (Na₂SO₄), filtered, and concentrated *in vacuo* to afford 0.80 g (99% crude yield) of aldehyde as a light yellow syrup. This was used as such for further reaction.

To a stirred soln. of $(F_3CCH_2O)_2POCH_2COOMe$ (0.66 ml, 3.12 mmol), 18-crown-6 (2.46 g, 9.36 mmol) in anh. THF (8 ml) was added KHMDS (5.86 ml, 2.93 mmol, 0.5M soln. in toluene) at -78° , and the temp. was raised to 0°, and the mixture was stirred for further 30 min. To the mixture, aldehyde (0.80 g, 1.55 mmol) dissolved in THF (5 ml) was added at -78° . The mixture was stirred for 2 h at -78° , then temp. was gradually increased to 0° in 6 h. Later, the reaction was quenched with aq. NH₄Cl (10 ml), and the mixture was extracted with AcOEt (2 × 30 ml). The combined org. layers were washed with brine (1 × 30 ml), dried (Na₂SO₄), and concentrated, and the residue was purified by CC (SiO₂; AcOEt/hexane 6 :94) to give **4** (0.58 g, 66%). Colorless syrup. $[a]_{25}^{25} = +118.3$ (c = 0.5, CHCl₃). IR (neat): 3030, 2910, 1740, 1220. ¹H-NMR (200 MHz): 7.26 – 7.20 (m, 5 H); 7.14 (d, J = 8.4, 2 H); 6.78 (d, J = 8.8, 2 H); 6.07 (t, J = 11.3, 1 H); 5.79 (d, J = 11.3, 1 H); 3.42 (t, J = 7.7, 1 H); 3.12 (t, J = 5.5, 1 H); 1.78 – 1.56 (m, 6 H); 1.40 – 1.15 (m, 10 H); 0.94 (d, J = 6.6, 3 H); 0.82 (d, J = 7.3, 3 H). ¹³C-NMR (75 MHz): 166.6; 152.9; 128.5; 128.0; 127.8; 121.0; 120.1; 113.7; 108.2; 87.4; 76.8; 74.8; 73.6; 71.4; 70.0; 55.2; 51.0; 42.5; 38.9; 36.8; 32.2; 27.3; 27.0; 25.8; 22.1; 16.6; 11.7. HR-ESI-MS: 591.3285 ([M + Na]⁺, $C_{34}H_{48}NaO_{7}^+$; calc. 591.3298).

Methyl (2Z,4S,5S,6S,9S)-9-(*Benzyloxy*)-10-[(4S)-2,2-*dimethyl*-1,3-*dioxolan*-4-yl]-4-*ethyl*-5-*hydroxy*-6-*methyldec*-2-*enoate* (**21**). To a stirred soln of **4** (0.56 g, 0.984 mmol) in CH₂Cl₂/H₂O 19 :1 (8 ml) was added DDQ (0.16 g, 1.18 mmol) at 0°, and the mixture was stirred at r.t. for 20 min. Then, sat. aq. NaHCO₃ (8 ml) was added, the mixture was and extracted with CH₂Cl₂ (2 × 20 ml), the combined org. layers were washed with H₂O (20 ml) and brine (10 ml), dried (Na₂SO₄), concentrated, and the crude residue was purified by CC (SiO₂; AcOEt/hexane 12 :88) to afford **21** (0.385 g, 87%). Colorless syrup $[\alpha]_{15}^{25} = +198.0$ (c = 1.4, CHCl₃). IR (neat): 3400, 3030, 1720, 1220. ¹H-NMR (200 MHz): 7.56–7.15 (m, 5 H); 6.05 (t, J = 11.3, 1 H); 5.80 (d, J = 11.8, 1 H); 4.56–4.50 (m, 2 H); 4.28–4.07 (m, 1 H); 3.97 (dd, J = 5.8, 8.0, 1 H); 3.66 (s, 3 H); 3.62–3.49 (m, 1 H); 3.43 (t, J = 7.7, 1 H); 3.29 (t, J = 5.5, 1 H); 1.86–1.17 (m, 17 H); 0.93 (d, J = 6.6, 3 H); 0.84 (t, J = 7.3, 3 H). ¹³C-NMR (75 MHz): 166.8; 152.3; 128.3; 127.8; 127.4; 120.9; 120.1; 108.4; 84.2; 79.2; 76.8; 73.6; 71.4; 70.0; 51.0; 42.9; 38.6; 36.7; 31.6; 27.2; 26.9; 22.0; 16.6; 11.5. HR-ESI-MS: 471.2741 ([M + Na]⁺, C₂₆H₄₀NaO₆⁺; calc. 471.2723).

(5R,6R)-6-[(2S,5S,7R)-5-(Benzyloxy)-7,8-dihydroxyoctan-2-yl]-5-ethyl-5,6-dihydro-2H-pyran-2one (22). To a soln. of 21 (0.30 g, 0.66 mmol) in benzene (3 ml) was added cat. TsOH at r.t., and the wasstirred for 3 h. The mixture was treated with Et₃N, and the solvent was removed under reduced pressure,and the residue was adsorbed on SiO₂ for CC (SiO₂; AcOEt/hexane 60:40) to afford 22 (0.20 g, 80%). $Colorless syrup. <math>[a]_{25}^{25} = +272.2$ (c = 0.3, CHCl₃). IR (neat): 3410, 2990, 1700, 1210, 1100. ¹H-NMR (500 MHz): 7.27 – 7.19 (m, 5 H); 6.99 (dd, J = 6.7, 9.6, 1 H); 5.98 (d, J = 9.6, 1 H); 4.61 – 4.40 (m, 2 H); 3.93 – 3.91 (m, 2 H); 3.71 – 3.65 (m, 1 H); 3.52 (dd, J = 3.3, 10.6, 1 H); 3.38 (dd, J = 6.7, 11.1, 1 H); 2.42 (br. s, 2 H); 2.26 – 2.23 (m, 1 H); 1.89 – 1.36 (m, 7 H); 1.23 – 1.18 (m, 2 H); 0.89 (t, J = 7.7, 3 H); 0.82 (d, J = 6.7, 3 H). ¹³C-NMR (75 MHz): 164.8; 151.1; 138.5; 128.3; 127.8; 127.6; 120.7; 84.2; 76.9; 71.4; 69.1; 66.8; 36.4; 33.6; 30.5; 28.1; 20.0; 14.8; 10.8. HR-ESI-MS: 399.2140 ($[M + Na]^+$, $C_2H_{32}NaO_5^+$; calc. 399.2147). (5R,6R)-6-[(2S,5S,7R)-5-(Benzyloxy)-7,8-bis][(tert-butyl)dimethylsilyl]oxy]octan-2-yl]-5-ethyl-5,6dihydro-2H-pyran-2-one. A soln. of**22**(0.16 g, 0.42 mmol), 2,6-lutidine (0.29 ml, 2.54 mmol), and (tert $butyl)dimethylsilyl trifluoromethanesulfonate (TBDMSOTf; 0.214 ml, 0.93 mmol) was stirred at <math>-10^{\circ}$ for 20 min under N₂, the reaction was quenched with sat. NaHCO₃ (5 ml), and the mixture was extracted with CH₂Cl₂ (2 × 15 ml). The org. layer was washed with sat. CuSO₄ soln. (2 × 15 ml), brine (1 × 15 ml), dried (Na₂SO₄), concentrated and the residue was purified by CC (AcOEt/hexane, 6 :94) to give the title compound (0.210 g, 82%). Colorless syrup. $[a]_{25}^{25} = +232.60$ (c = 1.5, CHCl₃). IR (neat): 3020, 2990, 1720, 1190. ¹H-NMR (500 MHz): 7.35 – 7.19 (m, 5 H); 7.02 (dd, J = 6.1, 9.2, 1 H); 6.04 (d, J = 9.7, 1 H); 4.61 – 4.42 (m, 2 H); 3.98 (dd, J = 2.5, 10.2, 1 H); 3.90 – 3.81 (m, 1 H); 3.68 – 3.59 (m, 1 H); 3.56 – 3.38 (m, 2 H); 2.34 – 2.24 (m, 1 H); 2.00 – 1.20 (m, 9 H); 0.98 (t, J = 7.1, 3 H); 0.90 – 0.88 (m, 21 H); 0.05 – 0.04 (m, 12 H). ¹³C-NMR (75 MHz): 165.1; 150.9; 138.2; 128.2; 127.5; 127.2; 120.9; 84.3; 76.1; 70.7; 70.3; 67.9; 39.8; 36.5; 33.6; 31.3; 27.9; 25.9; 20.0; 18.4; 17.1; 14.8; 10.9; – 3.9; – 4.7; – 5.3. HR-ESI-MS: 627.3868 ([M +Na]⁺, C₃₄H₆₀NaO₅Si⁺₂; calc. 627.3877).

(5R,6R)-6-[(2S,5S,7R)-5-(Benzyloxy)-7-[[tert-butyl(dimethyl)silyl]oxy]-8-hydroxyoctan-2-yl]-5-ethyl-5,6-dihydro-2H-pyran-2-one (23). A soln. of the compound (0.20 g, 0.33 mmol) obtained in the previous step in anh. THF (2 ml) were added HF · pyridine (41 µl) at 0°, and the mixture was stirred at r.t. for 12 h. Later, the mixture was poured into sat. NaHCO₃ soln. (10 ml), extracted with AcOEt (2 × 30 ml), org. layer was washed with sat. CuSO₄ soln. (2 × 15 ml) and brine (1 × 15 ml), dried (Na₂SO₄), concentrated, and the residue was purified by CC (SiO₂; AcOEt/hexane 20:80) to give 23 (0.11 g, 68%). Colorless syrup. [<math>a]₂₅²⁵ = +230.36 (c = 1.5, CHCl₃). IR (neat): 3410, 3020, 2980, 1720, 1190. ¹H-NMR (500 MHz): 7.36 – 7.24 (m, 5 H); 7.06 (dd, J = 6.3, 9.7, 1 H); 6.03 (d, J = 9.7, 1 H); 4.60 – 4.44 (m, 2 H); 4.00 (dd, J = 2.9, 10.2, 1 H); 3.96 – 3.88 (m, 1 H); 3.65 – 3.41 (m, 3 H); 2.37 – 2.27 (m, 1 H); 1.99 – 1.23 (m, 9 H); 0.96 (t, J = 7.8, 3 H); 0.92 – 0.85 (m, 12 H); 0.07 (s, 6 H). ¹³C-NMR (75 MHz): 164.7; 150.9; 138.7; 128.3; 127.6; 127.4; 120.8; 84.2; 76.1; 70.4; 67.0; 39.5; 36.5; 33.6; 30.7; 27.7; 25.8; 20.0; 18.0; 16.5; 14.9; 10.9; -4.3; -4.5. HR-ESI-MS: 513.3031 ([M + Na]⁺, C₂₈H₄₆NaO₅Si⁺; calc. 513.3012).

(5R,6R)-6-[(2S,5S,7R,8E,10E)-5-(Benzyloxy)-7-[[(tert-butyl)dimethylsilyl]oxy]-11-phenylundeca-8,10-dien-2-yl]-5-ethyl-5,6-dihydro-2H-pyran-2-one (24). To a stirred soln. of 23 (0.05 g, 0.102 mmol) inanh. CH₂Cl₂ (2 ml) were added NaHCO₃ (0.017 g, 0.204 mmol) and*Dess–Martin*periodinane (0.052 g,0.122 mmol) at 0° under N₂, and the mixture was stirred at r.t. for 1 h. Then, the reaction was quenchedwith 1:1 mixture of sat. aq. soln. of Na₂S₂O₃ and NaHCO₃ (3 ml), the mixture was extracted with CH₂Cl₂(2 × 15 ml), and the combined org. layers were washed with H₂O (15 ml), brine (10 ml), dried (Na₂SO₄),and concentrated, and the crude residue was purified by flash CC (SiO₂; AcOEt/hexane 10:90) to afford2 (42 mg, 84%). Colorless syrup. Without further characterization, the aldehyde was used as such for nextstep.

To the evacuated MS in a round bottomed flask and aldehyde (0.042 g, 0.086 mmol) in THF (1.5 ml) were added **3** (0.065 g, 0.258 mmol) and LiOH \cdot H₂O (0.061 g, 0.258 mmol) under N₂, and the mixture was heated at reflux for 12 h. The mixture was filtered through SiO₂ and washed with Et₂O (20 ml). The org. layer was dried (Na₂SO₄) and concentrated, and the residue was purified by CC (SiO₂; AcOEt/hexane 7:93) to give the *Wittig* product (0.022 g, 44%). Colorless syrup. $[a]_{25}^{25} = +79.7$ (c=0.3, CHCl₃). IR (neat): 3010, 2980, 1730, 1610, 1190. ¹H-NMR (500 MHz): 7.43–7.17 (m, 10 H); 7.06 (dd, J=6.4, 9.7, 1 H); 6.73 (dd, J = 10.1, 14.9, 1 H); 6.50 (d, J = 15.7, 1 H); 6.29 (dd, J = 10.5, 14.9, 1 H); 6.04 (d, J=9.7, 1 H); 5.78 (dd, J=6.8, 14.9, 1 H); 4.61–4.38 (m, 3 H); 4.00 (dd, J=2.8, 10.5, 1 H); 3.69–3.60 (m, 1 H); 2.37–2.24 (m, 1 H); 2.06–1.91 (m, 1 H); 1.89–1.38 (m, 8 H); 0.98–0.84 (m, 15 H); 0.06 (s, 3 H); 0.03 (s, 3 H). ¹³C-NMR (75 MHz): 164.1; 150.9; 137.8; 131.9; 129.6; 128.5; 128.3; 128.0; 127.7; 126.2; 122.9; 120.9; 84.3; 76.0; 71.7; 50.0; 43.8; 39.7; 37.2; 33.6; 29.6; 27.8; 25.9; 21.0; 14.8; 11.0; -3.7; -4.7. HR-ESI-MS: 611.3527 ([M+Na]⁺, C₃₇H₅₂NaO₄Si⁺; calc. 611.3533).

REFERENCES

[1] a) S. Sirirath, J. Tanaka, I. I. Ohtani, T. Ichiba, R. Rachmat, K. Ueda, T. Usui, H. Osada, T. Higa, J. Nat. Prod. 2002, 65, 1820; b) H. Zang, M. M. Conte, R. J. Capon, Angew. Chem., Int. Ed. 2010, 49, 9904.

- [2] a) S. Ghosh, S. U. Kumar, J. Shashidhar, J. Org. Chem. 2008, 73, 1582; b) Y. Su, Y. Xu, J. Han, J. Zeng, J. Qi, T. Jiang, X. Pan, X. She, J. Org. Chem. 2009, 74, 2743; c) A. ElMarrouni, S. R. Joolakanti, A. Colon, M. Heras, S. Arseniyadis, J. Cossy, J. Org. Lett. 2010, 12, 4074; d) J. Shashidhar, K. M. Reddy, S. Ghosh, Tetrahedron Lett. 2011, 52, 3106.
- [3] A. Kamal, P. Venkat Reddy, S. Prabhakar, P. Suresh, Tetrahedron: Asymmetry 2009, 20, 1798.
- [4] M. Miyazawa, N. Ishibashi, S. Ohnuma, M. Miyashita, *Tetrahedron Lett.* 1997, 38, 3419; M. Ihara, K. Yasui, N. Taniguchi, K. Fukumoto, *Tetrahedron Lett.* 1988, 29, 4963.
- [5] Y. Gao, J. M. Klunder, R. M. Hanson, H. Masamune, S. Y. Ko, K. B. Sharpless, J. Am. Chem. Soc. 1987, 109, 5765.
- [6] M. R. Johnson, T. Nakata, Y. Kishi, *Tetrahedron Lett.* 1979, 20, 4343; H. Nagaoka, Y. Kishi, *Tetrahedron* 1981, 37, 3873.
- [7] A. J. Mancuso, S.-L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480; A. J. Mancuso, D. S. Brownfain, D. Swern, J. Org. Chem. 1979, 44, 4148.
- [8] D. Tanner, P. Somfai, Tetrahedron Lett. 1988, 29, 2373.
- [9] M. D. Lebar, B. J. Baker, Tetrahedron Lett. 2007, 48, 8009; L. C. Dias, P. R. R. Meira, J. Org. Chem. 2005, 70, 4762.
- [10] D. K. Mohapatra, U. Dash, P. R. Naidu, J. S. Yadav, Synlett 2009, 2129; D. K. Mohapatra, G. Sahoo, D. K. Ramesh, J. S. Rao, G. N. Sastry, Tetrahedron Lett. 2009, 50, 5636.
- [11] J. Mulzer, C. Seilz, P. Luger, M. Weber, W. Reutter, Liebigs Ann. Chem. 1991, 947.
- [12] a) M. Schuster, S. Blechert, Angew. Chem., Int. Ed. 1997, 36, 2036; b) R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413; c) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18; d) E. G. Nolen, A. J. Kurish, K. A. Wong, M. D. Orlando, Tetrahedron Lett. 2003, 44, 2449; e) R. H. Grubbs, Tetrahedron 2004, 60, 7117; f) P. R. Krishna, G. Dayaker, Tetrahedron Lett. 2007, 48, 7279; g) P. R. Krishna, E. S. Kumar, Tetrahedron Lett. 2009, 50, 6676.
- [13] a) W. C. Still, C. Gennari, *Tetrahedron Lett.* 1983, 24, 4405; b) P. R. Krishna, R. Srinivas, *Tetrahedron Lett.* 2007, 48, 2013.
- [14] J. A. Marco, M. Carda, J. Murga, E. Falomir, Tetrahedron 2007, 63, 2929.
- [15] P. Ruiz, J. Murga, M. Carda, J. A. Marco, J. Org. Chem. 2005, 70, 713.
- [16] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277.
- [17] J. M. Takacs, M. R. Jaber, F. Clement, C. Walters, J. Org. Chem. 1998, 63, 6757.
- [18] J. Wirsching, J. Voss, G. Adiwidjaja, J. Balzarini, E. De Clercq, Nucleosides, Nucleotides Nucleic Acids 2001, 20, 1625.
- [19] H.-J. Liu, J. Yip, Tetrahedron Lett. 1997, 38, 2253.
- [20] a) J. R. Falck, D. K. Barma, R. Baati, C. Mioskowski, Angew. Chem., Int. Ed. 2001, 40, 1281; b) S. A. Weissman, D. Zewge, Tetrahedron 2005, 61, 7833.

Received August 28, 2013